

African Caribbean and Pacific Group of States (ACP) Science and Technology Programme

Biofuels Production vs. Food Security

Joe Asamoah, Ph.D

Yiri Lodge, University of Ghana 2 – 4 April 2013

Outline

- Global Biofuel (BF) Production
- Threat to Africa by Biofuel Production
- Statistics on BF Production
- Potential of Cellulosic BF
- Ligno-Cellulosic BF Production Enzymes
- Bio-Ethanol
- Generations of BFs
- Conclusion

Global Biofuel (BF) Production 1

Trebled from 2000 - 2007

Expected to 2ble again by 2011

Interest as alternative to fossils use in Transport

Global BF Production 2

- More production due to enforcement of Kyoto Protocol 2005
- Pursuit of BF Targets in African countries
- More attention to BFs production by policy makers and researchers

Outcomes

- **Energy Security vs. food security**
- Shift of BF from multipurpose solution to climate change, food insecurity and underdevelopment to "crime against humanity" (by UN Special Rapporteur)

African Threat by BF Production

 Food Security - Major Challenge
 Food vs Fuel Debate
 Land Ownership and Livelihoods

Statistics on BF Plantations in Africa 1 – British Firms

- British firms acquired more land in Africa for BF plantations than companies from any other country
- 50% of 3.2m ha. of BF land identified from Mozambique to Senegal, linked to 11 British companies

Statistics on BF Plantations in Africa 2

• Due to competition for land with crop plants, BF have (in some cases) led to

□ record food prices and

Irising hunger

• They can increase GHG emissions.

Statistics on BF Plantations in Africa 3

- Sub-Saharan Africa 100 projects and 50 companies in over 20 countries.
- Crest Global Green Energy (CGGE) has largest recorded landholding, 900,000ha in
 - 🛛 Mali,
 - Guinea &
 - Senegal.
- Tom Stuart, CEO said: "It is true in some cases biofuels displace food, but in our projects we 'intercrop', planting with food on the marginal.

Statistics on BF Plantations in Africa 4

- There is social element to CGGE projects, with all the local people put into the agreements
- Sun Biofuels (UK) leased
 8,000ha in Tanzania where it grows Jatropha curcas

Jatropha Plantation

An Ivory Coast nursery for jatropha, a non-edible plant whose oil-rich seeds can be processed into biodiesel. Courtesy Kambou Sia/AFP/Getty Images

EnerWise Africa

- Second-generation biofuels from lignocellulosic biomass, like:
 - □ forestry and crop residues,
 - **Corn stover, and**
 - switchgrass) are regarded as preferred feedstock for BF due to
 - **u** vast abundance of biomass crops

Cellulosic BFs Potential 2

Current cellulosic biomass-to-BF

- conversion processes still under development, & large-scale harvesting, storage, and
- □ Refinery systems not yet cost-effective
- **Companies operate pilot-scale facilities &**
- Will develop small commercial-scale biorefineries for wood chips, prairie grasses, and crop residues

within two to three years.

- Cellulosic biomass is composed of sugar polymers that can be broken down & fermented to ethanol,
- Because it provides the structural rigidity for plants and trees,
- It has evolved to be highly resistant to degradation from predatory organisms.

Enzymes for ligno-cellulose

Enzymes being

- Developed for ligno-cellulose degradation, but
- Conversion efficiency limited, & their
- Cost too high for large-scale commercialization.

Bio-ethanol

- Bio-ethanol is most widely used BF and is substituted or blended with gasoline.
- Produced by fermentation from
 - sugarcane,
 - 🛛 maize,
 - 🕽 cassava,
 - wheat,
 - sugar beet, and
 - sweet sorghum

Bioethanol Production

As of 2005, leading bio-ethanol producing countries include:

- Brazil (16.5 gigaliters per year),
 US (16.2),
- □ China (2.0),
- **□** European Union (1.0), &
- **India (0.3)**.

Summary of Biofuel Generations

First Generation	Second Generation	Third Generation	Fourth Generation
Biofuels produced from food crop	Biofuels produced from non-food crop	Genetically modified carbon neutral crop	Genetically modified carbon negative crop

Fourth Generation Biofuels

More carbon is consumed than released during

use

Why the Plethora of Generations?

- Challenge food versus fuel
- Climate Change concerns
 - **Carbon Intensity**
 - **Carbon neutral**
 - **Carbon negative**

Designed Biofuels

Positives of 4th Generation Biofuels

Good in Sequestration of CO2

Conclusion

- In Africa Biofuels (crop types) may pose a threat
- Cellulosic BFs have potential
- Plethora of BF Generations to address Food Security Issue
- Fourth Generation, for now has overcome challenges

THE END

